Washington Energy Policy Conference

Moving Towards “Energy Independence:” Myth and Reality

Herman Franssen

President, International Energy Associates, Inc
Distinguished Associate FACTS Global Energy

Washington, DC April 22, 2008
US well off in energy compared to most other nations

- US currently produces 70% of the energy we consume;
- Self-sufficient in virtually every energy form/fuel except for oil, and increasingly for natural gas – both critical commodities;
- Enormous endowment of coal, but presents environmental problems;
- Need to solve nuclear challenges
- We have the technical know-how and money to solve our most pressing energy problems in time.

Key question: Do we have the time and the will to make energy once again a top policy priority.
Revisiting the Past

November 1974 FEA Project Independence Blueprint held that the Nation could not only achieve energy independence by 1985 at $11 a barrel but, an accelerated leasing schedule in the Atlantic and Pacific OCS and tapping the potential resources of the NPR could result in US oil production of 17 mbd, making the US a net oil exporter.

CRS December 1975: Towards Project Interdependence: Energy in the Coming Decade concluded that “short of draconian measures to be taken by the executive and legislative branches of Government, “Project Independence” goals now seem unattainable...
US Energy Policies and Accomplishments

• "Beginning this moment, this Nation will never again use more foreign oil than we did in 1977 -- never. From now on, every new addition to our demand for energy will be met from our own production and our own conservation. The generation-long growth in our dependence on foreign oil will be stopped dead in its tracks right now and then reversed as we move through the 1980s, for I am tonight setting the further goal of cutting our dependence on foreign oil by one-half by the end of the next decade—a saving of over 4.5 million barrels of imported oil per day."

President Jimmy Carter, "Crisis of Confidence" speech, July 15, 1979
From Energy Independence to Major Importer

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption (mbd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>7.6</td>
<td>10.6</td>
<td>17.3</td>
<td>15.7</td>
<td>17.5</td>
<td>20.1</td>
<td>20.6</td>
</tr>
<tr>
<td>W.Europe</td>
<td>1.8</td>
<td>6.1</td>
<td>15.2</td>
<td>11.9</td>
<td>13.8</td>
<td>14.2</td>
<td>14.4*</td>
</tr>
<tr>
<td>Japan</td>
<td>0.2</td>
<td>1.3</td>
<td>5.4</td>
<td>4.4</td>
<td>5.4</td>
<td>5.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Production (mbd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>7.1</td>
<td>8.6</td>
<td>10.9</td>
<td>10.6</td>
<td>8.6</td>
<td>7.4</td>
<td>6.8</td>
</tr>
<tr>
<td>W.Europe</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td>4.0</td>
<td>5.2</td>
<td>6.2</td>
<td>5.5</td>
</tr>
<tr>
<td>Oil Imports (mbd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.5</td>
<td>2.0</td>
<td>6.4</td>
<td>5.1</td>
<td>8.9</td>
<td>11.7</td>
<td>13.8+</td>
</tr>
<tr>
<td>EU</td>
<td>1.7</td>
<td>5.7</td>
<td>14.7</td>
<td>7.9</td>
<td>8.6</td>
<td>8.0</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Source: BP Annual statistics

* Western Europe only ; + gross oil imports

US oil consumption has risen steadily since the mid 1980’s and production has fallen at an average rate of 1.5% per year.
Increasing Light Truck Market Shares

Post 1985 perception: Oil will not surpass $25/bbl

Café standards improved from 13 mpg in 1975 to 22 mpg in early 1980’s - limited improvement thereafter (SUV’s)
<table>
<thead>
<tr>
<th>Year</th>
<th>Res./Comm</th>
<th>Industrial</th>
<th>Electricity</th>
<th>Transp.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1.1</td>
<td>1.8</td>
<td>0.2</td>
<td>3.4</td>
<td>6.5</td>
</tr>
<tr>
<td>1960</td>
<td>1.7</td>
<td>2.7</td>
<td>0.2</td>
<td>5.1</td>
<td>9.8</td>
</tr>
<tr>
<td>1970</td>
<td>2.2</td>
<td>3.8</td>
<td>1.1</td>
<td>7.8</td>
<td>14.7</td>
</tr>
<tr>
<td>1980</td>
<td>1.5</td>
<td>4.8</td>
<td>1.4</td>
<td>9.5</td>
<td>17.1</td>
</tr>
<tr>
<td>1990</td>
<td>1.3</td>
<td>4.3</td>
<td>0.6</td>
<td>10.9</td>
<td>17.0</td>
</tr>
<tr>
<td>2000</td>
<td>1.3</td>
<td>4.9</td>
<td>0.5</td>
<td>13.0</td>
<td>19.7</td>
</tr>
<tr>
<td>2006</td>
<td>1.2</td>
<td>5.1</td>
<td>0.3</td>
<td>14.0</td>
<td>20.6</td>
</tr>
</tbody>
</table>
US Versus other OECD Oil Consumption

From the Carter to the Second G.W. Bush Administration no major energy legislation to curb oil demand.

Post 1980: Energy left to market forces
By contrast, Europe and Japan increased fuel taxes; Europe moved to diesel (25% more efficient) and Japan developed the hybrid engine.

1985-2006: US oil consumption rose by 5 mbd; Europe’s by 3 mbd
US oil production fell from 10.6 to 6.8 mbd; Europe’s rose from 4 to 5 mbd.

Result: Expanded EU of 450 million people and Japan’s 130 million people consume about the same volume of oil as the US with 300 million people. China and India together count 2.4 billion people and consume only about 10 mbd or half the US oil consumption. Is this sustainable?
Long term Global Economic and Energy Challenges

• Changing Global economy – Reversal of 150 years of economic history – center of global industrial activity shifting to Asia.

• Some 500-600 million Chinese and Indians as well as untold millions of other middle class consumers (in PPP) outside of the OECD are beginning to enjoy the benefits of the modern oil-based economy. We developed our economies after WWII of $ 3 a barrel oil; they will have to develop with $ 60-plus oil.

• South and East Asia are relatively poorly endowed with oil and gas resources which are concentrated largely in West Asia, creating potential supply security problems. Both China and India are richly endowed with coal reserves and resources, creating regional environmental and CO2 problems.

• The emerging Asian industrial giants are faced with a dual challenge, i.e. “The End of Cheap Oil” and the emerging threat of Global Warming which puts limits on the use of their abundant coal resources without CO2 sequestration. How to resolve the dilemma?

• Huge increase in oil and gas consumption in oil exporting countries at a time when oil production capacity growth is slowing.
Reference Scenario:
World Primary Energy Demand

Global demand grows by more than half over the next quarter of a century, with coal use rising most in absolute terms.
Reference Scenario:
Incremental World Primary Energy Demand

Fossil fuels account for most of the increase in global energy demand between now & 2030, though non-hydro renewables grows fastest.
Reference Scenario:
World Primary Energy Demand by Fuel

Oil remains the most important fuel, but its share in the global energy mix drops while those of gas, coal & modern renewables rise.
Most of the increase in oil demand comes from developing countries, where economic growth - the main driver of oil demand - is most rapid.
Most of the increase in oil demand comes from developing countries, where economic growth - the main driver of oil demand - is most rapid.
The Rest of the World has a lot of catching up to do!

Global Consumption of Oil per Capita, 2003

- U.S. & Canada
- Other Industrialized
- Rest of World
- Total World
OIL INTENSITY

- **Average per capita demand rate, oil demand, 2005**

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>barrels</th>
<th>World demand at this rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>25.6</td>
<td>454 Mbd</td>
</tr>
<tr>
<td>South Korea</td>
<td>16.5</td>
<td>288 Mbd</td>
</tr>
<tr>
<td>Italy</td>
<td>12.4</td>
<td>216 Mbd</td>
</tr>
<tr>
<td>Germany</td>
<td>11.8</td>
<td>205 Mbd</td>
</tr>
<tr>
<td>China</td>
<td>2.5</td>
<td>40.5 Mbd</td>
</tr>
<tr>
<td>India</td>
<td>1.3</td>
<td>29 Mbd</td>
</tr>
<tr>
<td>Rural areas, LDCs</td>
<td>0.2</td>
<td>3.5 Mbd</td>
</tr>
</tbody>
</table>

- **Real world**

 | | 4.78 | 84.5 Mbd |

- Annual ‘latent demand’ increase for population growth 75 Million = 0.98 Mbd/year
- Data Sources for above Table / Population data UN Population Information Network, Oil demand BP Amoco, IEA, EIA, Eurostat

IFP’s Bauquis and Mathieu: “The world may never see liquid hydrocarbons above 100 mbd”
Transportation accounts for nearly half of the 86 million barrels per day of oil consumed in the world and is a primary factor for continued reliance on imported petroleum from the volatile Middle East. Pressures on global supplies will grow over the next two decades as demand intensifies for transport fuels, especially gasoline and diesel. Advanced energy technologies for transportation and alternative fuel-based vehicles are being considered worldwide as a means of reducing dependence on fossil fuel, enhancing energy security, and curbing air emissions.

Transportation Sector Driving Oil Demand Growth

Vehicle ownership in 2003, per 1000

- More than 50% of the countries in the World have fewer than 100 vehicles per 1000
- Most countries below 10 are in Africa
- South Asia: 11 or lower
- Probably >40% below 50
- China: 15
- Latin America, S. E. Asia and Middle East: typically 50-200
- CIS and central European countries tend to be 200-400
- Most West European countries have 400-600
- USA: 826
- Japan: 581

Source: OPEC 2006
Car pool up by 1 billion?

Oil and Gas exporting countries: Concentration of Resources

- ≈ 90% of World Oil Reserves
- ≈ 80% of World Gas Reserves
Middle East Oil and Natural Gas Reserves (in percentage)

Oil
- Non-MENA 39%
- Saudi Arabia 20%
- Iran 10%
- Kuwait 8%
- Iraq 9%
- Other MENA 14%
- Other MENA 14%
- OECD 7.7%
 - Russia 6.6%
 - China 1.3%
 - India 0.5%

Natural gas
- Russia 26%
- Iran 16%
- Qatar 14%
- Saudi Arabia 14%
- UAE 3%
- Other MENA 8%
- Non-MENA 55%

Of Which
- OECD 7%
The Oil Supply Outlook

• Traditional analysis: Calculate oil demand and assume supply will always be available to meet demand at “reasonable” prices;
• It is necessary to study decline rates in producing fields and project possible reserve additions. When moving from vast onshore oil fields to smaller fields onshore and fields in hostile environments (deepwater, Actic), do we have the equipment and technical personnel?
• The FSU and Middle East are expected to provide most of the future supply growth. Will they be willing and able to comply?
• Alternative fuels, i.e. Canadian oil sands, extra heavy oil and biofuels will only meet part of future demand for liquid fuels. Transportation efficiency improvements are needed.
• In the years and decades ahead the industrial world will become more dependent on oil and natural gas from less secure sources of supply and a struggle for access to oil and natural gas reserves is expected to intensify.
The “Peak Oil” Debate

US oil industry submissions to the 2007 NOPC study “The Hard Facts” shows that industry on average believes that global oil production will plateau at around 100 mbd (about 84 mbd today). Some (TOTAL, Hess and other)) have gone on record questioning if 95 mbd of hydrocarbon liquids is achievable.

Reasons

Resource base of conventional and non-conventional oil not the issue but,
In some cases (North Sea for example), oil production has in fact peaked.
Non-OPEC conventional oil has either already peaked or will soon peak/plateau (PFC, PIRA, IFP)
Shortage of skilled manpower and offshore equipment
IOC access to promising hydrocarbon prospects
Resources nationalism
Changing policies in oil and gas exporting countries (backward bending supply curves? Preserve resources for future generations?)
Internal political and geopolitical issues.

All of the above and other factors work against production capacity expansion
Depending on oil demand growth, a global production plateau may be reached within the next decade. A decade is very short for mitigation purposes.
Reservoir capability declines: the leaking bucket syndrome

82 +/-
+ 38.6 mmbd
- 59 mmbd

3-5% capability decline rate

2% increase

97.6 mmbd = 10 Saudi Arabias by 2025
PAST DISCOVERY AND USGS ESTIMATES OF FUTURE DISCOVERY

USGS 1995 Forecast at 95% Probability (lowest outlook), Mean, and 5% Probability (highest outlook)
Towards a global oil production peak?

Non-OPEC Supply Forecast
Assumes Exploration Reserve Additions Typical of the Last 15 Years

This production profile is based on a model which takes into account known discovered oil, historical production, all known (large and small) discoveries that are undeveloped, likely future exploratory drilling, trends in discovery sizes, and decline rates.
The share of OPEC in world oil supply increases sharply as conventional non-OPEC production peaks towards the middle of next decade.
1 745 Gbl : 1 070 Gbl réserves + 120 Gbl Découverts + 555 Gbl High Tech : 110 Gbl_{EOR} + 270 Gbl_{YTF+IOR} + 175 Gbl_{EHO+TS},

Avec les investissements actuels

2006-2028 = Production limitée technico-économiquement

2028 = "déclin géologique"
Risks Reflected in Range of Production Projections

MILLION BARRELS PER DAY - OIL

IEA Medium-Term Outlook
EIA Ref Case
IOC – average
Association for Study of Peak Oil (ASPO)

* Source: NPC Data Warehouse.
World Non-Conventional Liquid Fuels

Figure 32. World Unconventional Liquids Production in the Reference Case, 1980-2030

Note: “Other” includes shale oils and other unidentified sources of unconventional liquid fuels.

Comparison of Administration Bill (Alternative Fuels) with SENR Bill (Biofuels)

<table>
<thead>
<tr>
<th>Year</th>
<th>(billions of gals/yr)</th>
<th>Administration</th>
<th>SENR (only biofuels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>11</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>12</td>
<td>13.2</td>
<td>15 Billion Gal Limit on Starch-Based Ethanol -</td>
</tr>
<tr>
<td>2013</td>
<td>14</td>
<td>13.8</td>
<td>Non Starch Ethanol Biofuels Must Constitute</td>
</tr>
<tr>
<td>2014</td>
<td>17</td>
<td>14.4</td>
<td>the Following Volumes of the Total</td>
</tr>
<tr>
<td>2015</td>
<td>22</td>
<td>15</td>
<td>Requirement</td>
</tr>
<tr>
<td>2016</td>
<td>28</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>2017</td>
<td>35</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>2018</td>
<td>Admn</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>2019</td>
<td>27</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>30</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>33</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>36</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

EISA Act of 2007 calls for biofuels production of 36 billion gallons by 2022 of which More than half will have to come from second generation biofuels. Will it???
Limits to corn-based ethanol

Source: Tad Patzek, *The United States of America Meets Planet Earth*, NPC Briefing, August 2005
U.S. Ethanol Production Capacity

Billion gallons

Annual Capacity Shown by Month

Source: Renewable Fuels Association and USDA.

More than one third of corn crop for fuel?
Low energy return means an enormous increase in primary energy consumption.

Source: David Fridley, 2007

- **Tight agricultural markets raising risks**
- **Corn ethanol:**
 --Approaching limits
 --Making minor inroads in crude oil market
 --Can do a little more with better yields
- **Cellulosic technology:**
 --Great prospects
 --Large potential biomass feedstock base (technical)
 --Must focus on economic potential
 --Need to improve yields to reduce feedstock costs
 --Public policy goal to get over initial adjustment costs
Revised EIA Outlook for energy through 2030 of March 2008

December 2007 EIA Long Term Energy Outlook
US Oil Consumption to rise from 21 mbd in 2006 to 27 mbd in 2030
Imports of oil and products to rise from 12.6 mbd (thru 2015) to 13.7 mbd in 2020; 14.9 mbd in 2025 and 16.4 mbd In 2030.

March 2008 EIA Outlook (revised for new CAFÉ standards and biofuels)
US oil consumption to rise from 21 to 25 mbd by 2030
Oil imports stable at around 12.2 mbd in 2015, rising to 12.7 mbd in 2020, 14.8 mbd in 2025 and 2030.

EISA Act of 2007 only marginally impacted on US future oil consumption and imports are still projected to rise by some 2 mbd by 2030. In view of rapidly changing global oil market conditions, this outlook is unsustainable!

(EIA March long term outlook assumes average economic growth rate of 2.4% /year versus 2.9% in the previous outlook – pop. Rises by 0.8% or 60 million people)
Figure 9. The import share of net liquids use falls from it current level.

EIA, March 2008 Long Term US Energy Outlook
US Slowest in the move towards efficient cars

2008: US average fuel economy for all new cars is 27.5 mpg (exception for flex fuel cars) versus EU at about 45 mpg and Japan at 48 mpg. China, Australia and even Canada are ahead of the US.

Japan’s average fuel economy target for 2010 is 35.2 mpg and 46.9 mpg. In 2015:

Europe (EU) aiming at 47 mpg by 2012.
Fuel Savings from Advanced Transportation Technologies

Fuel Savings From Gasoline-Hybrid Vehicles

<table>
<thead>
<tr>
<th>Number of Vehicles (millions)</th>
<th>Hybrid Vehicles Fuel Savings (barrels per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1,500</td>
</tr>
<tr>
<td>1.0</td>
<td>15,000</td>
</tr>
<tr>
<td>10.0</td>
<td>150,000</td>
</tr>
<tr>
<td>100.0</td>
<td>1,500,000</td>
</tr>
</tbody>
</table>

Fuel Savings From Advanced Diesel Engine Vehicles

<table>
<thead>
<tr>
<th>Number of Vehicles (millions)</th>
<th>Diesel Vehicles Fuel Savings (barrels per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1,000</td>
</tr>
<tr>
<td>1.0</td>
<td>10,000</td>
</tr>
<tr>
<td>10.0</td>
<td>100,000</td>
</tr>
<tr>
<td>100.0</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Fuel Savings From Hydrogen Fuel Cell Vehicles

<table>
<thead>
<tr>
<th>Number of Vehicles (millions)</th>
<th>Hydrogen Fuel Cell Vehicles Fuel Savings (barrels per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1,200</td>
</tr>
<tr>
<td>1.0</td>
<td>12,000</td>
</tr>
<tr>
<td>10.0</td>
<td>120,000</td>
</tr>
<tr>
<td>100.0</td>
<td>1,200,000</td>
</tr>
</tbody>
</table>

Note: Today, the world consumes roughly 86 million barrels of oil per day. There are an estimated 600 million cars worldwide.
US Energy Independence?

In a world of $70 to $120 oil the path we are on is unsustainable.

At $100 a barrel and 12 mbd of oil and oil product imports, we will pay $438 billion or close to one third of our annual exports of goods and services. Inefficient use of oil in road transportation is seriously impacting on US Competitiveness in the global economy.

US long term growth in oil imports is unsustainable in a world where oil and NGL’s may reach a plateau at 95 – 100 mbd (currently about 84 mbd).

US long term growth in oil consumption is unsustainable in light of likely CO2 abatement policies.
Some Recommendations for a new Energy Policy

• Balanced energy policy
• Open continental shelf Atlantic and Pacific to E&P
• Open NPR in Alaska
• Do not impose windfall profit taxes while supporting first generation ethanol at the tune of $21.75 a barrel.
• Provide tax advantages for hybrids, plug in hybrids and other means to promote significant improvements in transport energy efficiency.
• Serious review of flawed corn ethanol program (higher food costs, water problems, fertilizer issue (imports), and so on. Energy output perhaps only 20-25% higher than inputs.
• Continue to support R&D for second generation biofuels
• Support R&D for C02 sequestration (coal 50% of US electricity)
• Nuclear sector – select few designs – waste solution

Given the seriousness of the global oil supply, demand and price outlook, the EISA Act of 2007 Must be considered a “downpayment” for a future more effective energy policy.
Along with the NPC recommendation on fuel efficiency, we need to open more offshore and Alaskan Federal lands for oil and gas exploration in view of the observed US annual oil production decline rate of 1.5% of the past three decades. Plug-in hybrids and second generation biofuels deserve full public support.
Energy Independence?

As in my 1975 CRS report for the Joint Atomic Committee, energy independence today cannot be achieved short of implementing draconian measure.

Instead, we need to carefully balance energy security and environmental Interests and be truthful to the American people about the costs of new Energy programs which need to be independently verified by a blue ribbon panel of industry and academic experts (to avoid rushing into another controversial heavily subsidized corn ethanol program).

Time is currently our worst enemy – whatever program(s) we end up selecting to slow and reverse oil demand growth is going to take time – We do not have time and cannot afford to make more mistakes.

The pronouncements on energy and the websites of all three candidates for the Presidency are not encouraging. Let us hope that whoever wins will select and Energy Secretary of the stature and intellectual integrity of our first Secretary of Energy.
Suggestions for the next Administration

• We must be fully aware what can be done and at what it will cost;
• The American people are overburdened with higher mortgage premiums, higher food and fuel costs and rising inflation accompanies by stagnant income. We cannot make energy even more expensive by adding additional taxes in whatever form until the economy has fully recovered;
• There is a foreign policy and domestic policy component of energy policy;
• Foreign policy – shift in foreign policy to a less aggressive, multilateral and more even-handed policy towards the Middle East where much of the world’s incremental oil and gas supplies will have to come from.
• Domestic policies: Arrive at a realistic compromise between conventional and green energy policies to optimize production of all sources of domestic energy, from oil and gas (offshore and Alaskan NPR) to coal, nuclear and renewable. Supply solutions must be largely market based with tax incentives to stimulate development and production. All energy proposals must be accompanied by an environmental and economic cost assessment.
• Biofuels program is an example of a poorly conceived program leading to major market distortions, higher food prices and a myriad of other environmental program without major additions to net energy supplies.
• We must realize that energy efficiency gains in the transportation sector will be a more cost effective way to add to “supplies” than government sponsored programs dependent on large subsidies such as first generation biofuels.
• US energy policy should be balanced, taking into consideration national security, environment (including CO2 emissions) and cost to the public.
Coming Soon to This Site
A BETTER IRAQ
Coalition Construction Co.

Coming Soon to This Site
A BETTER AFGHANISTAN
Coalition Construction Co.
French war-time Oil Commisioner said it best:

- “He who owns the oil will own the world, for he will rule the sea by means of the heavy oils, the air by means of the ultra-refined oils, and the land by means of petrol and the illuminating oils. And in addition to these, he will rule his fellow men in an economic sense, by reason of the fantastic wealth he will derive from oil – as the wonderful substance which is more sought after and more precious today than gold itself”

- It is oil's pre-eminent financial value that enables it to bear so heavily on political behavior
Oil Flows & Major Chokepoints: The “Dire Straits”

The risk of an oil-supply disruption will grow as trade and flows through key maritime and pipeline chokepoints expand.
2025: Projected Net Oil Imports

Projected Net Increase in Oil Import Requirements

- **Total Asia** - (79%) +11.9 m b/d
- **South Korea** - (100%) +0.6 m b/d
- **India** - (87%) +2.7 m b/d
- **Japan** - (100%) +2.4 m b/d
- **China** - (71%) +6.1 m b/d
- **Europe (ex FSU)** - (80%) +4.0 m b/d
- **USA** - (72%) +0.6 m b/d

* % Figure Refers to Share of Projected Oil Demand Meet by Imports

Million b/d
Reserves Estimates

> 60% of the proven world oil reserves

> 40% of the proven world gas reserves

The Oil and Gas Hartland, a region in transition

- Green: Oilfields
- Red: Gas fields
Do We Need Saudi Oil?

- Saudi Arabia holds 25% of global oil reserves
- Saudi Arabia produces about 9.5 million b/d of crude oil plus 1.1 mbd of NGL’s which accounts for 13% of global production
- Saudi Arabia has held some 75% of global spare capacity
- Saudi Arabia has played a key role in providing oil supply stability since the 1980’s (Iran-Iraq War; Gulf War; Ven. and Iraq supply disruptions in 2003; 2004)
- In today’s oil market even a partial loss of Saudi production would create havoc in the global oil market
- Substitutes for Saudi oil: Iraq, other P. Gulf, Russia, Caspian?
Energy Security and US Foreign Policy

President Bush proposed new US energy policy aimed at replacing 75% of Oil imports from the Middle East by 2025. Why reduce imports from the Middle East when oil is fungible?

“...I spend a lot of time worrying about disruption of energy because of Politics or civil strife in other countries – because tyrants control the spigots”... (National Governors Conference 2006). All the other oil is produced in democratic countries?

At the same time we were asking those countries to increase production Capacity, we have frequently followed policies in the Middle East which are contrary to own interest to secure oil supplies for ourselves and other oil importing countries.
Middle East: A Region in Transition

...”The four most important drivers of politics and public sentiment in the Middle East –Israel/Palestine, Iraq, Iran and Arab democratic reform – are all bogged down in either chronic violence or massive political uncertainty... Throw in Turkey’s fast changing and slightly souring relationship with the US and the EU, the persistent tension between Washington and Damascus, Egypt’s increasingly strident domestic politics, and the US-Saudi pattern of loving and lashing out at one another, and you have a Middle East region in an early stages of across-the-board, potentially massive changes...
Middle East: A Region in Transition

...”An entire region coming untethered from its moorings is not a pretty sight, but this seems to be the state of things to come in the Middle East these days, thanks in large parts to decades of inept Arab state policies and a resurgent American unilateralist militarism. The consequences of this process are only now becoming clear in a Middle East region whose national and state structure have proven much easier to shock, shake and dismantle than to rebuild on a rational basis...”

Rami Khoury, Editor
The Daily Star, Beirut
War with Iran

War with Iran would be the end of the US present role in the world and could last as long as the religious wars in Germany in the 16th century according to Dr. Brzezinski.

“I think of war with Iran as the ending of America’s present role in the world”....Iraq may have been a preview of that, but it is still redeemable if we get out fast. In a war with Iran, we’ll get dragged down for 20 or 30 years. The world will condemn us. We will loose our position in the world”

Zbigniew Brzezinski
NSC Advisor to President Carter
Generally speaking, is your attitude towards the United States:

- Very favorable: 4%
- Somewhat favorable: 11%
- Somewhat unfavorable: 19%
- Very unfavorable: 64%
Which TWO of the following factors do you believe are most important in driving American policy in the Middle East?

- Promoting democracy: 4%
- Spreading human rights: 4%
- Promoting peace and stability: 6%
- Fighting terrorism: 7%
- Preventing the spread of nuclear weapons: 12%
- Preserving regional and global dominance: 30%
- Weakening the Muslim World: 33%
- Protecting Israel: 47%
- Controlling oil: 50%
The American People are in the midst of choosing the next President of the US. Which of the following candidates do you believe has the best chance of advancing peace in the Middle East?

- John McCain: 4%
- Hillary Clinton: 13%
- Barack Obama: 18%
- I am not following the American elections: 20%
- Policy will be the same no matter who becomes the next president: 32%